måndag 16 januari 2017

Is Quantum Computing Possible?

  • .....may or may not be mystery as to what the world view that quantum mechanics represents. At least I do, because I'm an old enough man that I haven't got to the point that this stuff is obvious to me. Okay, I still get nervous with it. And therefore, some of the younger students ... you know how it always is, every new idea, it takes a generation or two until it becomes obvious that there's no real problem. It has not yet become obvious to me that there's no real problem. I cannot define the real problem, therefore I suspect there's no real problem, but I'm note sure there's no real problem. 
  • So that's why I like to investigate things. So I know that quantum mechanics seem to involve probability--and I therefore want to talk about simulating probability. (Feynman asking himself about a possibility of quantum computing in 1982)
The idea of quantum computing originates from a 1982 speculation by Feynman followed up by Deutsch on the possibility of designing a quantum computer supposedly making use of the quantum states of subatomic particles to process and store information. The hope was that quantum computing would allow certain computations, such as factoring a large natural number into prime factors, which are impossible on a classical digital computer.

A quantum computer would be able to crack encryption based on prime factorisation and thus upset the banking system and the world. In the hands of terrorists it would be a dangerous weapon...and so do we have to be afraid of quantum computing?

Not yet in any case! Quantum computing is still a speculation and nothing like any real quantum computer cracking encryption has been constructed up to date, 35 years later. But the hopes are still high...although so far the top result is factorisation of 15 into 3 x 5...(...in 2012, the factorization of 21 was achieved, setting the record for the largest number factored with Shor's algorithm...)

But what is the reason behind the hopes? The origin is the special form of Schrödinger's equation as the basic mathematical model of the atomic world viewed as a quantum world fundamentally different from the macroscopic world of our lives and the classical computer, in terms of a wave function
  • $\psi (x_1,...,x_N,t)$ 
depending on $N$ three-dimensional spatial coordinates $x_1$,...,$x_N$ (and time $t$) for a system of $N$ quantum particles such as an atom with $N$ electrons. Such a wave function thus depends on $3N$ spatial variables of $N$ different versions of $R^3$ as three-dimensional Euclidean space.

The multi-dimensional wave function $\psi (x_1,...,x_N,t)$ is to be compared with a classical field variable like density $\rho (x,t)$ depending on a single 3d spatial variable $x\in R^3$. The wave function $\psi (x_1,...,x_N,t)$ depends on $N$ different copies of $R^3$, while for $\rho (x,t)$ there is only one copy, and that is the copy we are living in.

In the Many Worlds Interpretation MWI of Schrödinger's equation the $N$ different copies of $R^3$ are given existence as parallel universes or multiversa, while our experience still must be restricted to just one of them, with the other as distant shadows.

The wave function $\psi (x_1,...,x_N,t)$ thus has an immense richness through its contact with multiversa, and the idea of quantum computing is to somehow use this immense richness by sending a computational task to multiversa for processing and then bringing back the result to our single universe for inspection.

It would be like sending a piece of information to an immense cloud for complex computational processing and then bringing it back for inspection. But for this to work the cloud must exist in some form and be accessible.

Quantum computing is thus closely related to MWI and the reality of a quantum computer would seem to depend on a reality of multiversa. The alternative to MWI and multiversa is the probabilistic Copenhagen Interpretation CI, but that does not make things more clear or hopeful.

But what is the reason behind MWI and multiversa? The only reason is the multi-dimensional aspect of Schrödinger's equation, but Schrödinger's equation is a man-made ad hoc variation of the equations of motion of classical mechanics obtained by a purely formal procedure of representing momentum $p$ by a multi-dimensional gradient differential operator as $p=i\nabla$ thus formally replacing $p^2$ by the action on $\psi$ by a multi-dimensional Laplacian $-\Delta =-\sum_j\Delta_j$ with $\Delta_j$ the Laplacian with respect to $x_j$, thus acting with respect to all the $x_j$ for $j=1,...,N$.

But by formally replacing $p$ by $i\nabla$ is just a formality without physical reason, and it is from this formality that MWI and multiversa arise and then also the hopes of quantum computing.  Is there then reason to believe that the multi-dimensional $-\Delta\psi$ has a physical meaning, or does it rather represent some form of Kabbalism or scripture interpretation?

My view is that multiversa and quantum computing based on a multi-dimensional Schrödinger equation based on a formality, is far-fetched irrational dreaming, that Feynman's feeling of a real problem sensed something important,  and this is my reason for exploration of realQM based on a new version of Schrödinger's equation in physical three-dimensional space.

PS1 One may argue that if MWI is absurd, which many think, then CI is also absurd, which many think, since both are interpretations of one an the same multi-dimensional Schrödinger equation, and the conclusion would then be that if all interpretations are absurd, then so is what is being interpreted, right? Even more reason for realQM and less hope for quantum computing...

PS2 MWI was formulated by Hugh Everett III in his 1956 thesis with Wheeler. Many years later, Everett laughingly recounted to Misner, in a tape-recorded conversation at a cocktail party in May 1977, that he came up with his many-worlds idea in 1954 "after a slosh or two of sherry", when he, Misner, and Aage Petersen (Bohr’s assistant) were thinking up "ridiculous things about the implications of quantum mechanics". (see Many Worlds? Everett, Quantum Theory and Reality, Oxford University Press)

PS3 To get a glimpse of the mind-boggling complexity of $3N$-dimensional space, think of the big leaps form 1d to 2d and from 2d to 3d, and then imagine the leap to the 6d of the two electrons of Helium with $N=2$ as the simplest of all atoms beyond Hydrogen with $N=1$. In this perspective a single Helium atom as quantum computer could be imagined to have the computational power of a laptop. Yes, many dimensions and many worlds are mind-boggling, and as such maybe just phantasy.

lördag 14 januari 2017

The Quantum Manifesto Contradiction

The Quantum Manifesto calls upon Member States and the European Commission to launch a €1 billion Flagship-scale Initiative in Quantum Technology, preparing for a start in 2018 within the European H2020 research and innovation framework programme.

The scientific basis of the Manifesto is: 
  • With quantum theory now fully established, we are required to look at the world in a fundamentally new way: objects can be in different states at the same time (superposition) and can be deeply connected without any direct physical interaction (entanglement).
The idea is that superposition and entanglement will open capabilities beyond imagination:
  • This initiative aims to place Europe at the forefront of the second quantum revolution now unfolding worldwide, bringing transformative advances to science, industry and society. It will create new commercial opportunities addressing global challenges, provide strategic capabilities for security and seed as yet unimagined capabilities for the future. As is now happening around the world, developing Europe’s capabilities in quantum technologies will create a new knowledge-based industrial ecosystem, leading to long-term economic, scientific and societal benefits. It will result in a more sustainable, more productive, more entrepreneurial and more secure European Union.
  • Quantum computers are expected to be able to solve, in a few minutes, problems that are unsolvable by the supercomputers of today and tomorrow.
But from where comes the idea that the quantum world is a world of superposition and entanglement? Is it based on observation? No, it is not, because the quantum world is not open to such inspection.  

Instead it comes from theory in the form of a mathematical model named Schrödinger's equation, which is linear and thus allows superposition, and which includes Coulombic forces of attraction and repulsion as forms of instant (spooky) action at distance thus expressing entanglement. 

But Schrödinger's equation is an ad hoc man-made theoretical mathematical model resulting from a purely formal twist of classical mechanics, for which a  deeper scientific rationale is lacking.  Even worse, Schrödinger's equation for an atom with $N$ electrons involves $3N$ space dimensions, which makes computational solution impossible even with $N$ very small.  Accordingly, the Manifesto does not allocate a single penny for solution of Schrödinger's equation, which is nowhere mentioned in the Manifesto. Note that the quantum simulators of the grand plan shown above are not digital solvers of Schrödinger's equation, but Q
  • can be viewed as analogue versions of quantum computers, specially dedicated to reproducing the behaviour of materials at very low temperatures, where quantum phenomena arise and give rise to extraordinary properties. Their main advantage over all-purpose quantum computers is that quantum simulators do not require complete control of each individual component, and thus are simpler to build. 
  • Several platforms for quantum simulators are under development, including ultracold atoms in optical la ices, trapped ions, arrays of superconducting qubits or of quantum dots and photons. In fact, the rst prototypes have already been able to perform simulations beyond what is possible with current supercomputers, although only for some particular problems.
The Quantum Manifesto is thus based on a mathematical model in the form of a multi-dimensional Schrödinger equation suggesting superposition and entanglement, from which the inventive physicist is able to imagine yet unimagined capabilities, while the model itself  is considered to be useless for real exploration of possibilities, because not even a quantum computer can be imagined to solve the equation.  This is yet another expression of quantum contradiction.

Recall that the objective of RealQM is to find a new version of Schrödinger's equation which is computable and can be used for endless digital exploration of the analog quantum world.

See also Quantum Europe May 2017.

onsdag 4 januari 2017

Update of realQM and The Trouble of Quantum Mechanics

I have made an update of realQM as start for the New Year! More updates will follow...

The update contains more computational results (and citations) and includes corrections of some misprints.

The recent book by Bricmont Making Sense of Quantum Mechanics reviews the confusion concerning the meaning of quantum mechanics, which is still after 100 years deeply troubling the prime achievement of modern physics. As only salvation Bricmont brings out the pilot-wave of Bohm from the wardrobe of dismissed theories, seemingly forgetting that it once was put there for good reasons. The net result of the book is thus that quantum mechanics in its present shape does not make sense...which gives me motivation to pursue realQM...and maybe someone else sharing the understanding that science must make sense...see earlier post on Bricmont's book ...

Yes, the trouble of making sense of quantum mechanics is of concern to physicists today, as expressed in the article The Trouble with Quantum Mechanics in the January 2017 issue of The New York Review of Books by Steven Weinberg, sending the following message to the world of science ultimately based on quantum mechanics:
  • The development of quantum mechanics in the first decades of the twentieth century came as a shock to many physicists. Today, despite the great successes of quantum mechanics, arguments continue about its meaning, and its future. 
  • I’m not as sure as I once was about the future of quantum mechanics. It is a bad sign that those physicists today who are most comfortable with quantum mechanics do not agree with one another about what it all means. 
  • What then must be done about the shortcomings of quantum mechanics? One reasonable response is contained in the legendary advice to inquiring students: “Shut up and calculate!” There is no argument about how to use quantum mechanics, only how to describe what it means, so perhaps the problem is merely one of words. 
  • On the other hand, the problems of understanding measurement in the present form of quantum mechanics may be warning us that the theory needs modification. 
  • The goal in inventing a new theory is to make this happen not by giving measurement any special status in the laws of physics, but as part of what in the post-quantum theory would be the ordinary processes of physics.
  • Unfortunately, these ideas about modifications of quantum mechanics are not only speculative but also vague, and we have no idea how big we should expect the corrections to quantum mechanics to be. Regarding not only this issue, but more generally the future of quantum mechanics, I have to echo Viola in Twelfth Night: “O time, thou must untangle this, not I.” 
Weinberg thus gives little hope that fixing the trouble with quantum mechanics will be possible by human intervention, and so the very origin of the trouble, the multi-dimensional linear Schrödinger equation invented by Schrödinger, must be questioned and then questioned seriously (as was done by Schrödinger propelling him away from the paradigm of quantum mechanics), and not as now simply be accepted as a God-given fact beyond question. This is the starting point of realQM.

Of course Lubos Motl, as an ardent believer in the Copenhagen Interpretation, whatever it may be, does not understand the crackpot troubles/worries of Weinberg.

As an expression of the interest in quantum mechanics still today, you may want to browse the upcoming Conference on 90 Years of Quantum Mechanics presented as:
  • This conference celebrates this magnificent journey that started 90 years ago. Quantum physics mechanics has during this period developed in leaps and bounds and this conference will be devoted to the progress of quantum mechanics since then. It aims to show how universal quantum mechanics is penetrating all of basic physics. Another aim of the conference is to highlight how quantum mechanics is at the heart of most modern science applications and technology.  ago
Note the "leaps and bounds" which may be the troubles Weinberg is referring to...

måndag 19 december 2016

New Quantum Mechanics 21: Micro as Macro

The new quantum mechanics as realQM explored in this sequence of posts offers a model for the microscopic physics of atoms which is of the same form as the classical continuum mechanical models of macroscopic physics such as Maxwell's equations for electro-magnetics, Navier's equations for solid mechanics and Navier-Stokes equations for fluid mechanics in terms of deterministic field variables depending on a common 3d space coordinate and time.

realQM thus describes an atom with $N$ electrons realQM as a nonlinear system of partial differential equations in $N$ electronic wave functions depending on a common 3d space coordinate and time.

On the other hand, the standard model of quantum mechanics, referred to as stdQM, is Schrödinger's equation as a linear partial differential equation for a probabilistic wave function in $3N$ spatial coordinates and time for an atom with $N$ electrons.  

With realQM the mathematical models for macroscopic and microscopic physics thus have the same form and the understanding of physics can then take the same form. Microphysics can then be understood to the same extent as macrophysics.

On the other hand, the understanding of microphysics according to stdQM is viewed to be fundamentally different from that of macroscopic physics, which effectively means that stdQM is not understood at all, as acknowledged by all prominent physicists.

As an example of the confusion on difference, consider what is commonly viewed to be a basic property of stdQM, namely that there is limit to the accuracy that both position and velocity can be determined on atomic scales, as expressed in Heisenberg's Uncertainty Principle (HUP).

This feature of stdQM is compared with the situation in macroscopic physics, where the claim is that both position and velocity can be determined to arbitrary precision, thus making the case that microphysics and microphysics are fundamentally different.

But the position of a macroscopic body cannot be precisely determined by one point coordinate, since  a macroscopic body is extended in space and thus occupies many points in space.  No one single point determines the position of and extended body. There is thus also a Macroscopic Uncertainty Principle (MUP).

The argument is then that if the macroscopic body is a pointlike particle,  then both its position and velocity can have precise values and thus there is no MUP. But a pointlike body is not a macroscopic body and so the argument lacks logic.

The idea supported by stdQM that the microscopic world is so fundamentally different from the macroscopic world that it can never be understood, thus may well lack logic. If so that could open to understanding of microscopic physics for human beings with experience from macroscopic physics.

If you think that there is little need of making sense of stdQM, recall Feynman's testimony:
  • We have always had a great deal of difficulty understanding the world view that quantum mechanics represents. At least I do, because I’m an old enough man that I haven’t got to the point that this stuff is obvious to me. Okay, I still get nervous with it ... You know how it always is: every new idea, it takes a generation or two until it becomes obvious that there’s no real problem. I cannot define the real problem, therefore I suspect that there is no real problem, but I’m not sure there’s no real problem. (Int. J. Theoret. Phys. 21, 471 (1982).) 
It is total confusion, if it is totally unclear if there is a problem or no problem and it is totally clear that nobody understands stdQM....

Recall that stdQM is based on a linear multi-dimensional Schrödinger equation, which is simply picked from the sky using black magic ad hoc formalism, which could be anything, and is then taken as a revelation about real physics when interpreted by reversing the black magics. 

This is like scribbling down a sign/equation at random without intentional meaning, and then giving the sign/equation an interpretation as if it had an original meaning, which may well be meaningless, instead of expressing a meaning in a sign/equation to discover consequences and deeper meaning.   

fredag 16 december 2016

New Quantum Mechanics 20: Shell Structure

Further computational exploration of realQM supports the following electronic shell structure of an atom:

Electrons are partitioned into an increasing sequence of main spherical shells $S_1$, $S_2$,..,$S_M$ with each main shell $S_m$ subdivided into two half-spherical shells each of which for $m>2$ is divided into two angular directions into $m\times m$ electron domains thus with a total of $2m^2$ electrons in each full shell $S_m$.  The case $m=2$ is special with the main shell divided radially into two subshells which are each divided into half-spherical subshells each of which is finally divided azimuthally, into $2\times 2$ electron domains for $S_2$ subshell, thus with a total of $2m^2$ electrons in each main shell $S_m$ when fully filled, for $m=1,...,M$, see figs below.

This gives the familiar sequence 2, 8, 18, 32,.. as the number of electrons in each main shell.

4 subshell of S_2
8 shell as variant of full S_2 shell
 9=3x3 halfshell of S_3

The electron structure can thus be described as follows with parenthesis around main shells and radial subshell partition within parenthesis:
  • (2)+(4+4)
  • (2)+(4+4)+(2)
  • ...
  • (2)+(4+4)+(4+4) 
  • (2)+(4+4)+(8)+(2)
  • ....
  • (2)+(4+4)+(18)+(2)
  • ...
  • (2)+(4+4)+(18)+(8)
Below we show computed ground state energies assuming full spherical symmetry with a radial resolution of 1000 mesh points, where the electrons in each subshell are homogenised azimuthally, with the electron subshell structure indicated and table values in parenthesis. Notice that the 8 main shell structure is repeated so that in particular Argon with 18 electrons has the form 2+(4+4)+(4+4):

Lithium (2)+1: -7.55 (-7.48)                  1st ionisation:      (0.2)
Beryllium (2)+(2): -15.14 (-14.57)           1st ionisation: 0.5 (0.35)
Boron (2)+(2+1): -25.3 (-24.53)               1st ionisation: 0.2 (0.3)
Carbon (2)+(2+2): -38.2  (-37.7)               1st ionisation 0.5 (0.4)
Nitrogen (2)+(3+2):  -55.3 (-54.4)            1st ionisation  0.5  (0.5)
Oxygen (2)+(3+3): -75.5 (-74.8)               1st ionisation  0.5  (0.5)
Fluorine (2)+(3+4):  -99.9   (-99.5)            1st ionisation  0.5      (0.65)
Neon (2)+(4+4):   -132.4     (-128.5  )        1st ionisation 0.6        (0.8)
Sodium (2)+(4+4)+(1): -165 (-162)
Magnesium (2)+(4+4)+(2): -202  (-200)
Aluminium (2)+(4+4)+(2+1): -244 (-243)
Silicon (2)+(4+4)+(2+2): -291 (-290)
Phosphorus (2)+(4+4)+(3+2): -340 (-340)
Sulphur (2)+(4+4)+(4+2): -397 (-399)
Chlorine (2)+(4+4)+(3+4): -457 (-461)
Argon: (2)+(4+4)+(4+4): -523 (-526)
Calcium: (2)+(4+4)+(8)+(2): -670 (-680)
Titanium: (2)+(4+4)+(10)+(2): -848 (-853)
Chromium: (2)+(4+4)+(12)+(2): -1039 (-1050)
Iron: (2)+(4+4)+(14)+(2): -1260 (-1272)
Nickel: (2)+(4+4)+(16)+(2): -1516 (-1520)
Zinc: (2)+(4+4)+(18)+(2): -1773 (-1795)
Germanium: (2)+(4+4)+(18)+(2+2): -2089 (-2097)
Selenium: (2)+(4+4)+(18)+(4+2):- 2416 (-2428)
Krypton: (2)+(4+4)+(18)+(4+4): -2766 (-2788)
Xenon: (2)+(4+4)+(18)+(18)+(4+4): -7355  (-7438)
Radon: (2)+(4+4)+(18)+(32)+(18)+(4+4): -22800 (-23560)

We see good agreement even with the crude approximation of azimuthal homogenisation used in the computations.

To see the effect of the subshell structure we compare Neon: (2)+(4+4) with Neon: (2)+(8) without the (4+4) subshell structure, which has a ground state energy of -153, which is much smaller than the observed -128.5.  We conclude that somehow the (4+4) subdivision of the second is preferred before a subdivision without subshells. The difference between (8) and (4+4) is the homogeneous Neumann condition acting between subshells, tending to increase the width of the shell and thus increase the energy.

The deeper reason for this preference remains to describe, but the intuition suggests that it relates to the shape or size of the domain occupied by an electron.  With subshells electron domains are obtained by subdivision in both radial and azimuthal direction, while without subshells there is only azimuthal/angular subdivision of each shell.

We observe that ionisation energies, which are of similar size in different shells, become increasingly small as compared to ground state energies, and thus are delicate to compute as the difference between the ground state energies of atom and ion.

Here are sample outputs for Boron and Magnesium as functions of distance $r$ from the kernel along the horizontal axis :

We observe that the red curve depicting shell charge $\psi^2(r)r^2dr$ per shell radius increment $dr$, is roughly constant in radius $r$, as a possible emergent design principle. More precisely, $\psi (r)\sim \sqrt{Z}/r$ mathches with $d_m\sim m^2/Z$ and $r_m\sim m^3/Z$ with $d_m$ the width of shell $S_m$ and thus the width of the subshells of $S_m$ scaling with $m/Z$, and thus the width of electrons in $S_m$ scaling with $m/Z$.

We thus have $\sum_mm^2\sim M^3\sim Z$ and with $d_m\sim m^2/Z$ the atomic radius $\sum_md_m\sim M^3/Z\sim 1$ is basically the same for all atoms, in accordance with observation.

Further, the kernel potential energy and thus the total energy in $S_m$ scales with $Z^2/m$ and the total energy by summation over shells scales with $\log(M)Z^2\sim \log(Z)Z^2$, in close correspondence with $Z^{\frac{1}{3}}Z^2$ by density functional theory.

Recall that the electron configuration of stdQM is based on the eigen-functions for Schrödinger's equation for the Hydrogen atom with one electron, while as we have seen that of realQM rather relates to spatial partitioning. Of course, eigen-functions express some form of partitioning, and so there is a connection, but the basic problem may concern partitioning of many electrons rather than eigen-functions for one electron.


torsdag 8 december 2016

Quantum Mechanics as Theory Still Without Meaning

Yet another poll (with earlier polls in references) shows that physicists still today after 100 years of deep thinking and fierce debate show little agreement about the stature of quantum mechanics as the prime scientific advancement of modern physics.

The different polls indicate that less than 50% of all physicists today adhere to the Copenhagen Interpretation, as the main text book interpretation of quantum mechanics. This means that quantum mechanics today after 100 years of fruitless search for a common interpretation, remains a mystery without meaning. Theory without interpretation has no meaning and science without meaning cannot be real science.

If only 50% of physicists would agree on the meaning of the basic text book theories of classical physics embodied in Newton/Lagranges equations of motion, Navier's equation for solid mechanics, Navier-Stokes equations for fluid dynamics and Maxwell's equations for electromagnetic, that would signify a total collapse of classical physics as science and subject of academic study.

But this not so: classical physics is the role model of science because there is virtually no disagreement on the formulation and meaning of these basic equations.

But the polls show that there is no agreement on the role and meaning of Schrödinger's equation as the basis of quantum mechanics, and physicists do not seem to believe this will ever change. This is far from satisfactory from scientific point of view.

This is my motivation to search for a meaningful quantum mechanics in the form of realQM presented in recent posts. Of course you may say that for many reasons my chances of finding some meaning are very small, but science without meaning cannot be real science.

PS Lubos Motl, as a strong proponent of a textbook all-settled Copenhagen interpretation defined by himself, reacts to the polls with
  • The foundations of quantum mechanics were fully built in the 1920s, mostly in 1925 or at most 1926, and by 1930, all the universal rules of the theory took their present form...as the Copenhagen interpretation. If you subtract all these rules, all this "interpretation", you will be left with no physical theory whatsoever. At most, you will be left with some mathematics – but pure mathematics can say nothing about the world around us or our perceptions.
  • In virtually all questions, the more correct answers attracted visibly greater fractions of physicists than the wrong answers.
Lubos claims that more correct views, with the true correct views carried by only Lubos himself, gathers a greater fraction than less correct views, and so everything is ok from Lubos point of view. But is greater fraction sufficient from scientific point of view, as if scientific truth is to be decided by democratic voting? Shouldn't Lobos ask for 99.9% adherence to his one and only correct view? If physics is to keep its position as the king science?

Or is modern physics instead to be viewed as the root of modernity through a collapse of classical ideals of rationality, objectivity and causality?

tisdag 15 november 2016

realQM vs Hartree-Fock and DFT

I have put up an updated version of realQM (real Quantum Mechanics) to be compared with stdQM (standard QM).

stdQM is based on a linear Schrödinger equation in a $3N$ dimensional wave function with global support for an atom with $N$ electrons, which is made computable in Hartree-Fock and Density Functional Theory DFT approximations reducing the dimensionality to basically 3d.

realQM is based on a system of non-linear Schrödinger equations in $N$ 3d electron wave functions with local disjoint supports, which is computable without approximation. Evidence that realQM describes real physics is given.

onsdag 9 november 2016

Trump: End of Global Warming Alarmism

The new president of US Donald Trump expressed a clear standpoint against global warming alarmism during the presidential race:
  • The concept of global warming was created by and for the Chinese in order to make U.S. manufacturing non-competitive.
  • Any and all weather events are used by the GLOBAL WARMING HOAXSTERS to justify higher taxes to save our planet! They don't believe it is $\$\$\$\$$!
  • This very expensive GLOBAL WARMING bullshit has got to stop. Our planet is freezing, record low temps,and our GW scientists are stuck in ice.
  • It’s snowing & freezing in NYC. What the hell ever happened to global warming?
  • Ice storm rolls from Texas to Tennessee - I'm in Los Angeles and it's freezing. Global warming is a total, and very expensive, hoax!
Trump says that he will end all federal clean energy development, all research on solar, wind, efficiency, batteries, clean cars, and climate science:
  • I will also cancel all wasteful climate change spending from Obama-Clinton, including all global warming payments to the United Nations. These steps will save $100 billion over 8 years, and this money will be used to help rebuild the vital infrastructure, including water systems, in America’s inner cities.
This is hopeful to the world and to science. It says that you cannot fool all the people all the time, in a democracy with free debate and science. 

This is the beginning of the end of global warming alarmism including its most aggressive form led by Sweden and Germany. The weather is now celebrating Trump's victory by heavy snow fall over Stockholm...

PS Trump picks top climate skeptic to lead EPA transition:
  • Choosing Myron Ebell means Trump plans to drastically reshape climate policies.
  • Ebell’s views appear to square with Trump’s when it comes to EPA’s agenda. Trump has called global warming “bullshit” and he has said he would “cancel” the Paris global warming accord and roll back President Obama’s executive actions on climate change (ClimateWire, May 27).
Finally, reason is taking over...

söndag 6 november 2016

Why are Scientists Openly Supporting Hillary?

Physicists and mathematicians such as Peter Woit, Leonard Susskind and Terence Tao have come out as strong supporters of Hillary in the presidential race, and then of course as strong opponents to Trump. This is unusual because scientists seldom (openly) take on political missions.

Why is that? Isn't science beyond politics? No, not in our time, and then not in particular climate science, which has become 100% politics. Climate scientists don't like Trump, because he says that climate science is 100% politics and not science. 

Is it the same thing with physics and math? Is a pure mathematician like Tao and a string theorist like Susskind fearing that a questioning non-opportunist Trump would be more difficult to deal with than an opportunist Hillary representing (scientific) establishment? What if Trump would question the value of string theory, as he did with climate science?

lördag 5 november 2016

Weinberg: Why Quantum Mechanics Needs an Overhaul!

My new book Real Quantum Mechanics seems to fill a need: Nobel Laureate in Physics Steven Weinberg believes that quantum mechanics needs an overhaul because current debates suggest need for new approach to comprehend reality:
  • I’m not as happy about quantum mechanics as I used to be, and not as dismissive of its critics.
  • It’s a bad sign in particular that those physicists who are happy about quantum mechanics, and see nothing wrong with it, don’t agree with each other about what it means.
I hope this can motivate you to check out the new approach to quantum reality presented in the book, which addresses many of the issues raised by Weinberg.

Weinberg takes the first step to progress by admitting that quantum mechanics in its present form cannot be the answer to the physics of atoms and molecules.

Of course the witness by Weinberg is not well received by ardent believers in a quantum mechanics once and for all cut in stone by Heisenberg and Born, such as Lubos Motl.

But it may be that questioning a theory, in particular a theory supposedly being embraced by all educated, shows more brains and knowledge than simply swallowing it without any question.

PS1 I put up a comment on Lubos Reference frame, but the discussion was quickly cut by Lubos, us usual...any questioning of the dogma of Heisenberg-Bohr-Born is impossible to Lubos, but that is not in the spirit of real science and physics...

PS2 Here is my closing comment which will be censored by Lubos: It is natural to draw a parallel between Lubos defence of the establishment of QM and the defence of the Clinton establishment by Woit, Tao, Susskind et cet, (rightly questioned by Lubos) in both cases a defence with objective to close the discussion and pretend that everything is perfectly normal. Right Lobos?

PS3 Here is a link to Weinberg's talk.